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The problem of propagation of intense shock waves is investigated in the case where the 

value of the adiabatic exponent yi in the conditions at the shock wave differs from the 

value of this exponent v in the differential equations describing the domain of continu- 

ous motion behind the wave. If rl < r the proposed scheme makes possible approximate 
qualitative allowance for the energy expended on dissociation, ionization, and excitation 

of the vibrational degrees of freedom of the molecules. Solving the problem becomes a 

matter of constructing a self-similar solution of the second kind. 

Self-similar solutions of the second kind are characterized by the fact that the expo- 

nents in the expressions of the self-similar variables in these solutions are obtained not 
on the basis of dimensional considerations, but rather as certain values which follow from 

the condition of existence of the solution in the whole p]. As was shown in [2], solutions 

of the second kind arise as follows. 
Self-similar solutions generally constitute asymptotic expressions of the solutions of 

more general, non-selfsimilar problems. They can be obtained from the non-selfsimilar 
solutions by taking certain limits as certain dimensionless combinations 5, q.. . contain- 

ing the independent variables and the constant parameters of the problem go to zero or 
to infinity. If the corresponding limits exist and are finite, the limiting problem is asso- 

ciated with a self-similar solution of the first kind. 

On the other hand, if a finite limit does not exist while the non-selfsimilar solution for 

ET 11 -) 0 has an asymptotics of one of the two “power” types 

rlZ f (4)? 0 (4 / 11s) (0.1) 

where a, p are certain constants, then the limiting problem is associated with a self- 

similar solution of the second kind. 

The exponents a, fi... remain in the limiting problem as a kind of trace of the non- 

selfsimilar solution from which the self-similar solution was obtained by taking its limit; 

this is what gives rise to the exponents of the self-similar variable which cannot be 

determined from dimensional considerations. This trace vanishes in the case of a regu- 
lar limiting process, i. e. in the case of self-similar solutions of the first kind. It is essen- 
tial that the irregularity of the limiting process be nonremovable (i.e. that its elimina- 

tion cannot be effected by, let us say, the application of conservation laws) ; if this is not 
so, then the self-similar solution can be obtained as a solution of the fiit kind by a trans- 
formation of the dimensionless variables. 

In p] we analyzed an example of a problem of unsteady filtration in which a self- 

similar solution of the first kind resulted for one value of a parameter occurring in the 
problem, while a self-similar solution of the second kind resulted for all the other values. 
The asymptotics of the non-selfsimilar solution took the form of the first expression of 
(0.1). A similar situation arises in the problem investigated in the present paper, although 

the asymptotics of the non-selfsimilar solution in this case takes the form of the second 
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expression of (0.1). Our problem concerns the propagation of intense shock waves, 
although in contrast to the familiar formulation of the intense-explosion problem first 

proposed by Sedov in [3] (see also n. 4, 5. 6, 71). we assume that the value of the adia- 
batic exponent yr in the conditions at the shock wave differs from the value y of this 

exponent in the differential equations describing the domain of continuous motion behind 
the wave. 

For YI < Y this scheme makes possible approximate qualitative allowance for energy 

expenditure on dissociation, ionization, and excitation of the vibrational degrees of free- 
dom of the molecules in a certain intermediate range of propagation of the intense 

shock wave (cf. 183). It appears that in dealing with the problem of propagation of intense 
blasts in an atmosphere containing fine dust particles and water droplets (e. g. in a cloud) 

it is also advisable to allow for the difference between the adiabatic exponents at the 

shock and in the continuous portion of the flow, since the dust particles or water droplets 
are carried away by the shock wave or are burned up or vaporized at the latter. 

In this connection we must mention studies [9. 10, 111. Sidorkina [11] (see also [S]) 

investigated the propagation of intense blasts in aerosols, reducing the problem to the 

investigation of intense shock waves in a polytropic state when the polytropic exponents 
at the shock wave and in the continuous portion of the flow must be taken equal to each 
other but not equal to the Poisson adiabatic exponent of the gas. The present study dif- 

fers fundamentally from [g-11] in the fact that the presence of the energy integral in 
the problems considered in the latter papers yields self-similar solutions of the first kind. 

For completeness we consider the cases yl < y and v1 > v., The resulting family of 
solutions describes a continuous set of motions which includes ordinary intense blasts and 

the propagation of intense detonation waves. 

1. Let us begin by considering the following non-selfsimilar problem. An infinite 
space filled with quiescent gas of density p0 contains a spherically symmetric domain 
of diameter d in which a finite energy E is released instantaneously at the initial 

instant t = 0. As usual in problems involving intense shock waves, the initial gas pres- 

sure is negligible. 
As stated above, we assume that the adiabatic exponent in the domain of continuous 

motion is equal to y, and that the adiabatic exponent at the shock wave front is y1 # y, 

so that the conditions at the shock wave can be written as [5] 

Ps (us - c> = - P&1 P2 b2 - 4% + Yz - 0 

Hence, 2 71 + 1 
+ = T1_tlC’ p2 = .fl_ 1 PO, PL = & pots 

(1.1) 

(1.2) 
Here c is the velocity of propagation of the shock wave, p is the gas density, p is 

the pressure, and u is the velocity ; the subscript 2 denotes the values of the variables 

directly behind the wave front. 
The integral 00 

c i ,,P -$+ (r pi, p r2dr J 
0 

is not preserved in this problem if Yr # Y . This is because the third condition of (1.1). 

which can be rewritten as 
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+ PlU2 - tT _‘;,,I’_ 1) (;) Pn (4 - 4 = 0 (4.3) 

corresponds formally to the loss (for Y1 < y) or influx (for Yr > y) of energy at the 
shock wave front. There is. of course, no actual loss of influx of energy, but merely the 

conversion of energy into other forms. Thus, the defining parameters of the problem are 
p 0, E, r, t, a', T, Yr(where t. is the time and r’ is the distance from the center of sym- 

metry), so that the problem contains two independent parameters, namely 

rl = d E ( ) -% PO 
(1.4) 

Making use of Sedov’s variables [5], we can express the velocity, density, and pressure 

as 
p = P,~(E,%7971)~ U = fW9lJLrA P= Po$wl,r,r1) (1.5) 

The familiar solution of the problem of an intense point explosion for y = yr is the 

solution of the limiting problem with singular initial data corresponding to d = 0 and 

obtainable as the limit of solution (1.5) as q + 0, 

R = R (E, Y), I’ = V (E, ~1, P = P (E, y) 

~-0 (0 = Eo (~1 WZ / poYh 

Here r. (t) is the radius of the shock wave and E. is a constant which depends on y. 
Superficially. it would appear that a similar limiting form of solution (1.6) must also 

hold for y1 # y,sime all the considerations of dimensional analysis for the non-selfsimi- 

lar solution remain valid (the appearance of a new parameter y1 does not alter the situ- 
ation in this respect) and since taking the limit as d + 0, i. e. as tl + 0 (passage to a 
point explosion), must render the solution independent of the parameter n, and, seemingly, 
make it a self-similar solution of the form (1.6). However, a self-similar solution of the 

form (1.6) does not exist for y1 # y . This can be inferred in elementary fashion from 
Sedov’s proof of the existence of a solution of the intense-explosion problem for y1 = Y 

c51. 
In fact, the following relation is valid for a solution of the form (1.6) which satisfies 

the symmetry relation u (0, t) = 0 for all & (0 < E < io) : 

P = ‘I - i Rp 0 - %) 
27 Ws +I - V) (1.7) 

Making substitutions (1.6) in conditions (1.2) at the shock wave, we obtain 

2P 2 
---_Vs, P= T- 
71-i- i ) 

V RV, P=+V for 4=&, (1.8) 

These relations are not compatible for Y1 # y , which proves the nonexistence of a 
solution of the form (1.6) for y1 # y . 

It is natural to expect,however, that for a sufficiently small diameter d of the domain 
in which the energy is released and a sufficiently high energy, the dependence of the 

motion on this diameter must soon cease (i.e. the motion becomes self-similar in the 
limiting case). This would seem to lead inevitably to a solution of the form (1.6). In 
fact this is not the case, and the limiting solution, which is indeed self-similar, cannot 
be expressed in the form (1.6). 
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The above analysis of the case. y1 # y proved insufficient (since a self-similar solu- 
tion in the expected form does not exist) because our assumption of the existence of 
finite limits of the functions R, V, P as 11 ---f 0 was not valid. 

2. In constructing the limiting solution we shall be concerned essentially with the 
asymptotic form of the solution of the above non-selfsimilar problem for large t. In 

principle, this solution can be either self-similar or non-selfsimilar. Both E and r\ tend 
to zero with increasing t . In accordance with the general considerations developed in 

p], we assume that even though a finitelimit does not exist as E and q tend separately 
to zero, there does exist a number fi such that the dominant terms of the asymptotic 

forms of the functions P, V, R as 6, r] -+ 0 are given by 

P = P (&f-y, R z= R (&f), V == v (EJTf) (2.1) 
Wse2ofL21)(*). 

If the above assumption is valid, then the limiting motion belongs to the class of 

power-law self-similar solutions of the gas dynamic equations pointed out in [12, 13, 5, 

141. It is convenient to renormalize the independent self-similar variable as in [5] and 
to take it in the form 

5 = c(j*st E - r ;‘.!” -(1-e)‘5 
rip !Po ’ j, 

A = ~jj’&P!W+) (2.2) 

where the constant parameter o is chosen in such a way that j = 1 at the shock wave 

front. This means, among other things, that the asymptotic law of shock wave propaga- 

tion can be written as ,.a = ~(l-~)‘s~;(l--P)‘st(2-2P)!j 
(2.3) 

The parameters E and tl can be made to go to zero for fixed r and t by making E’ 

and d go to infinity and to zero. respectively. Moreover, if our assumption is valid, then 

the self-similar limiting motion (the “point explosion”) corresponds for yl # y to the 
release at the blast center not of a finite amount of energy, but rather of an energy which 
tends to infinity or to zero as d -+ 0 in such a way that 

&$&(1-P) = c,onst, (2.4) 

Thus, the limiting motion is a self-similar motion of the second kind p]. The expo- 

nent b,,or (which is the same thing) the exponent of the time in the expression for the 
self-similar variable, namely CL = 2/5 - %I’~ fi remains as the “trace” of the limiting 

passage from the initial non-selfsimilar motion. This trace vanishes in the ordinary 

self-similar solutions (and also in our problem when yr = r). The exponent in question 
must be determined from the condition of existence of a self-similar solution of the 

problem in the whole. 
Let us obtain the solution of the problem by the method of Chernyi fl5. l] which will 

serve us as a rough preliminary estimate. In the zeroth approximation the entire mass 

M = (4n 13) poR3, of gas taking part in the motion is concentrated at the shock 
wave front with the radius R (t); the gas pressure pe in the cavity is given by pc = “p2, 

wherep2 is the pressure at the front and a is a constant which must be determined. As 
in the ordinary case 71 = y, the equation of momentum implies that 

* ) In principle this case admits of expression of the form P = ‘;‘P (5 / 11” ) (cf. (0.1) ), 
etc., but the equations of motion imply that 6 and the similar constants in the expres- 
sions for the other variables are equal to zero. 
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c = aa-3 (l-4, a = con& 

The enregy E of the gas taking part in the motion is given by 

(2.5) 

(2.6) 

BY virtue of relations (1.3). (1.1) and (1.2) we have 

dE _- = - 4nR2p,ct E = - .t4nR2p,c3 ;;,‘;-,; , T.= r -7.1 
dt (r - 1) (r1- 1) (2*7) 

Substituting (2.5) and (2.6) into (2.7), we obtain the following equation for e : 

ati 

I f 

y-1 1 
~2$~---_-_ 

a_ r1+1 2 I 

(l+D--2)(2.;J 

2(n+ 1) = 

/ " I 
III the self-similar mode R - ta, c - P-l. 

Hence, a = I/ (4 -38). We see that the 
function a‘(~~) can be determined by the 

Chernyi method uniquely for all ~1 > 1; it 

appears as the broken curve in Fig. 1, where 

D is the domain of nonuniqueness of the exact 
) solution. 

‘Y ZY+f A 8. Let us consider the exact solution. To 

Fig. 1 determine the parameter a and to construct 

the limiting solution for y1 # y we substitute 

(1.5)- (2.1) into the gas dynamics equations and conditions (1.3) at the shock wave. 
In accordance with [5] this yields 

dz 
dV= ~{12(~-l)+3(~-l)~](V-a)2-((r-l)V(V--l)(V-a)- 

- [w4)+x(Y--)1q (34 

A=(V-a)[V(V--)(V-a)+(x-33V)z], x = 2 (1 - 4 
7 ’ 

z=yP 
R 

d In c 
olv= 

z-((V-a)2 
V(V-i)(Y-a)+@-33V)z (3.2) 

(V - a) +$ = - 3V_ VW--i)(V-a)+(x-33V)z 
z-((Y-a)a - (3.3) 

The conditions of conservation of the material flux, momentum, and energy at the 
shock wave take the form 

z= -yV(V-a), Rz=arV 
22 

-r (r1- 1) = 
V2 f0; 5 = 1 (3.4) 

The exponent a = 2/s - 2/sb can be determined from the condition whereby the 
integral curve in the plane zV of Eq. (3.3) which emerges from the point M defined by 
relations (3.4) (the image of the shock wave front) passes through the point N (the image 
of the center of symmetry); in moving from iv to M the self-similar independent vari- 
able 5 increases monotonically from 5 = 0 to 5 = 1. 

Analysis shows that the dependence of a on rl is of the form indicated by the solid 
curve in Fig.1. In the interval from y1 = 1 to y1 = 2y + 1 it is represented by the 
monotonically increasing curve a (JYJ which passes through the points 
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(a = 2/sy + 2, y1 = I), (a = 2/s, Tl = Y) 

(a = (3Y + 3) / (579 + 3), Yl = 2Y + 1) 

The exponent a is not uniquely defined for Tt > 2y + 1. A similar ambiguity was 

noted in lJ6] for another self-similar problem of the second kind (that of a convergent 

shock wave). The author of the latter paper suggested that in reality a assumes its mi- 

Y 

Fig. 2 

nimum value. Whether this hypothesis is 
valid remains unclear, however. 

The qualitative form of the required inte- 

gral curve in the plane ZV in the case yt,( 
< y (for y < 2) is shown in Fig. 2a. where 

the numbers 1- 3 refer to the curves 

2 = - TV (V - a), 2 = (V - c.c)~, 

z= V(V- 1) (V - a) (3V - x)-l 

respectively. 
If yt > y and y1 > 2y + 1 the inte- 

gral curve which emerges from the saddle 

and passes through a singular point of the 
node type, namely the left-hand point of 

intersection of the curves 

z = V (V - 1) (V - a) (3V - x)-l, 

2 = (V - a)” 

yields not just one. but a whole family of integral curves satisfying all the above condi- 
tions. Thus, as soon as a node-type point arises in the plane ZV there appears a certain 

interval of values of a, and the value of the exponent a becomes nonunique (Fig. 2b). 
The analysis ln the intermediate case y < yr < 2y + 1 is quite similar to that 

carried out in the first case, and a can be determined unambiguously for each yr; here 

we have 
42? + 1 - 0) = (3Y + 3) (5Y + 3) 

4. 1’. As in the case of self-similar solutions of the second kind in general, the solu- 
tion in question is defined to within a constant u. In the case yr = r, A = aE the con- 
stant o can be determined [5] from the conservation law 

+7&P) Pdr = const (4.1) 

which also holds for non-selfsimilar motions. No such conservation law applies when 
vr# Y , and the only way of determining o is by numerical calculation of the non- 
selfsimilar problem until the emergence of the solution onto the above self-similar 
asymptotics,which is known to within the required constant. 

2’. Analysis of the range ‘I* > 2y + i, and in particular the elimination of the ambi- 
guity which prevails in this case is beyond the scope of the present paper. We merely 

note the following facts. For a< 1 the velocities are everywhere directed outward from 
the center of symmetry. For CC > i the flow zone is divided into two parts by a certain 
sphere : inside this sphere the velocities are directed towards its center ; outside it they 
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are directed outward from the center. The case a = 1 corresponds to intense detonation 
waves (*). In the case of an intense detonation the condition at the shock wave is of the 
form 1 

Tm--- +, (4.2) 

where 4 is the ratio of the heat generated at the front per unit mass of the gas to the 

square of the velocity of propagation of the wave relative to the statlonary gas. Here 
we have already made allowance for the fact that the independent self-similar variable 
is inversely proportional to the time and that the detonation wave propagates at a con- 

stant velocity. As we know f18], in order to obtain a unique solution of the detonation 

problem it is necessary to impose an additional condition (usually the Chapman-Jou~et 

condition) consisting of the requirement that the velocity of propagation of the wave 
relative to the gas be equal to the local velocity of sound, so that for 5 = 1 we have 

2 = (V - 1)s 
The last condition of (3.4) can be rewritten as 

(4;3) 

From (4.3) and (4.4) we infer that for every solution of the detonation problem there 
exists a Yz for which this solution coincides with the solution of the problem under inves- 

tigation for a = 1. However, this y1 is bounded below. Let us now determine the ~1, 
corresponding to the mode in which the Chapman-Jouguet condition holds. Solving sys- 

tern (4.3). (4.4) simultaneously with the first condition of (3.4) for a = 1, we flnd that 

z=p*= Y’ (Y + $)-B, 4 = q* = ‘/z (y2 - I)-' 

at the detonation front,so that 
y1 = 2Y + 1 

The remaining “partly compressed” modes clearly correspond to q < q.: the Chap- 

man-Jouguet mode is associated with the minimum wave propagation velocity for equal 
rates of heat release at the wave front. These modes correspond to y1 > 2y + 1 ; the 

velocity of the products of combustion behind the detonation wave front for these solu- 
tions is larger than the velocity of sound. 

The authors are grateful to 0. S. Ryzhov, Iu. P. Raiser, Ia. B. Zel’dovich and G. G. Cher- 
nyi for their comments on the present study. 
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It is shown that for sufficiently large values of the adiabatic exponent of a gas the solu- 
tion of the problem of diffraction of an arbitrarily intense shock wave at a small angle is 
of a form different from the usual one, and that the solution of this problem takes three 
forms in the general case. The corresponding pressure formulas for the case in question 
are derived. 

The problem of diffraction of an arbitrarily intense shock wave at a small angle was 
first investigated by Lighthill @.I. who, however, did not go so far as to obtain complete 
analytic solution. This was one of the factors which led Ting and Ludloff @] to recon- 
sider the problem using a different method of solution. These authors succeeded in 


